Womenamp;aposs Slip Briefs Seamless White HEMA Clearance Online Fake odV7NxQIl

SKU77393725031981
Women&aposs Slip Briefs Seamless (White) HEMA Clearance Online Fake odV7NxQIl
Women&aposs Slip Briefs Seamless (White) HEMA

BabyPips

The beginner's guide to FX trading

Inclusion and Exclusion Criteria

The searches were conducted for studies with point prevalence estimates of ADHD. Eligible studies were those that used the diagnostic criteria from DSM-III, DSM-III-R, or DSM-IV with samples from community or school populations, or using a whole population approach (eg, national surveys). We included studies of any language and with participants aged ≤18 years. Intervention or treatment studies were excluded.

Search Strategy

The databases of Medline, PsycINFO, CINAHL, Embase, and Web of Science were searched by using Medical Subject Headings terms and key words to identify potentially eligible studies ( Slim Jeans With Rips In Washed Black Washed black Religion Get Authentic For Sale whxgD7Hy
). Key words included attention deficit, ADHD, hyperactivity, disorder, epidemiology, point estimate, child, adolescent, survey, and prevalence. No language, date, or publication restrictions were used.

Our search yielded 5134 unique citations ( Trunks With Paisley Print 5 Pack SAVE Multi Asos Cheap Sale Genuine Manchester Cheap Online Outlet Latest Collections Comfortable For Sale Store iktN1V8d
). All studies were screened against the eligibility criteria by 2 independent reviewers (R.T. and S.S.) by using screening software (DistillerSR, Evidence Partners, Ottawa, Ontario, Canada). Conflicts were resolved through discussion. Data were independently extracted by the same 2 reviewers regarding general publication information, DSM edition used for diagnosis, country, language of publication, sampling procedure (eg, random selection, cohort), year of sampling (or publication date if sampling year not reported), sampling frame, demographic variables of sample, informant, measures used to make diagnosis (ie, symptom only checklists, reports of diagnosis by others, interviews that were not necessarily conducted by clinicians), and whether the diagnosis met the full DSM criteria for each edition (ie, age of onset and duration for DSM-III; age of onset, duration, and symptoms manifest in at least 1 setting for DSM-III-R; age of onset, duration, symptoms manifest in ≥2 settings, and clinically significant impairment for DSM-IV). The number of children/adolescents identified as having ADHD was extracted, and prevalence was calculated by dividing this number by the total sample size.

FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-analyses flow diagram.

Only 1 prevalence estimate for each DSM edition was extracted for each study. The most conservative diagnosis was used in those studies reporting >1 estimate. Several studies reported lower prevalence of ADHD when children were the informant compared with parent, Woman Cropped Cutout Highrise Bootcut Jeans Light Denim Size 28 3x1 Cheap Price Factory Outlet Buy Cheap Low Cost UELXhzJL1m
, 16 parent compared with teacher, Sale Footlocker embroidered logo Tshirt Black Drôle de Monsieur Nicekicks Online cRgJ8wW
, SWIMWEAR Swimming trunks Beverly Hills Polo Club Cheap Footlocker Finishline eY3rB
and clinicians were reported to estimate the lowest prevalence compared with any other informant. Cheap Pick A Best Womens Active Front Closure Sports Bra Magic Bodyfashion Fast Delivery For Sale Free Shipping For Nice Best Place For Sale rnUOm2
, 13 Therefore, if a study reported prevalence estimates from different informants, we chose child over parent or teacher, a parent over teacher, and a clinician over any other informant. If the study was longitudinal with multiple prevalence estimates over time in the same sample, the first prevalence estimate was chosen. If a study reported different prevalence estimates for different ages, the combined prevalence estimate was extracted. Finally, if a study reported several prevalence estimates for ADHD based on full or partial criteria, data were extracted by using the most comprehensive criteria available (eg, we extracted full criteria instead of partial, severe instead of moderate ADHD, and clinical instead of subthreshold).

Biofortification

As covered earlier in this entry, children under the age of 5 are typically the most vulnerable to vitamin-A deficiency. Many countries try to tackle this issue by delivering vitamin-A supplements to children, in the form of high-dose capsules several times per year.

In the map below we see the coverage rate of vitamin-A supplementation in children aged between 6-59 months. This is defined to be sufficient if a child receives at least two high-dose capsules per year. In 2014, we see that the coverage rate of supplementation across many countries in Sub-Saharan Africa and South Asia is very high--in many cases greater than 90 percent.

Although some countries still have very low rates of coverage, progress has been considerably over the last few decades. Since 1990, coverage rates in South Asia have nearly doubled, and since 2000, coverage in Sub-Saharan Africa has increased almost five-fold.

Iodine deficiency is the leading cause of preventable brain damage in childhood. Recognised as a driver in perinatal mortality, a leading cause of mental retardation (iodine deficiency can result in a mean IQ loss of 13.5 points in the population), and thyroid impairments, in the mid-1980s, the world committed to ending global iodine deficiency. 6

Iodine deficiency results from dietary intakes low in iodine; this typically occurs within populations with soils low in iodine content (thereby hindering iodine concentrations in crops). Iodine deficiency is therefore hard to address simply through dietary diversification.

The global solution to addressing deficiency has been through Universal Salt Iodization (USI) programmes. Salt is used as a delivery device for iodine for several reasons: it is widely consumed and has little seasonal variation; salt is typically distributed from a few centralised production centres; it has little impact on taste or texture of foods; and it is inexpensive (USI is estimated to cost US$ 0.02-0.05 per person per year). Womens Volant Mocrofloral Bikini Top Maison Lejaby New Styles Cheap Price 4qChYl

Since the WHO and UNICEF recommended USI to address iodine deficiency, the world has made significant progress. More than 120 countries now have USI programmes, and it's estimated that 71 percent of households across the world have access to iodized salt. 8 Many countries have eliminated iodine deficiency as a public health issue.

Iodine deficiency remains a public health issue in some countries (particularly those of lower incomes). In the map below we see the share of households consuming iodized salt from 1993-2013. Overall, we see that many countries (even those of low income) have achieved levels between 60-100 percent. However, access across a handful of countries remains very low--in 2010 for example, less than 10 percent of households in Sudan and Mauritania consumed iodized salt.

One impact of micronutrient deficiency is its potential to exacerbate existing disease and illnesses. In 2015, nearly 500,000 children died from diarrheal diseases (the third largest cause of child mortality). Diarrhea, especially in children, has important links to malnutrition. Malnutrition can serve to exacerbate the risk of mortality from diarrhea. Additionally, diarrhea affects the ability of children to retain and utilise nutrients properly--this means requirements for nutrient intake is higher than under normal circumstances.

Log In Sign Up
- ruffled denim skirt Blue Isabel Marant Buy Cheap 2018 New J9XA7SYT1

A micromechanical actuator having the ability to move in two directions. The actuator can be manufactured in planar arrays using semiconductor manufacturing equipment. The planar array of actuators can be used as a microcillia array.The actuators are formed from two layers of electrically resistive material which are used to heat a non-conductive material which has a high coefficient of thermal expansion. The pattern of resistive material in the two layers is arranged such that the actuator can be bent in two directions, both in the plane of the actuator and normal to the plane of the actuator.

Latest Silverbrook Research Pty. Ltd. Patents:

Skip to: Good Selling Sale Online Buy Cheap Pay With Paypal Sale Sweat Sunset Body Bobo Choses Bobo Choses Sale Amazon Buy Cheap For Nice vL4npTaNi
· Claims · References Cited · Patent History · Patent History

Description

FIELD OF THE INVENTION

The present invention relates to a thermal actuator device and, in particular, discloses details of a micro cilia array and use thereof.

The present invention further relates to actuator technology and particularly relates to a micro mechanical actuator having improved characteristics.

BACKGROUND OF THE INVENTION

Thermal actuators are well known. Further, the utilization and construction of thermal actuators in micro mechanics and Micro Electro Mechanical Systems (MEMS) is also known.

Unfortunately, devices constructed to date have had limited operational efficiencies which have restricted the application of thermal actuators in the MEMS area. There is therefore a general need for improved thermal actuators for utilization in the MEMS and other fields and in particular the utilization of multiple actuators in a cilia array.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved form of thermal actuator having a large range of operational capabilities in addition to the formation of large arrays of thermal actuators for the movement of objects in close proximity with the actuators.

In accordance with the first aspect of the present invention, there is provided a thermal actuator comprising an elongate member of heat expansible material adapted to be anchored at a proximal end and having a movable distal end, and a plurality of independently heatable resistive elements incorporated in the elongate member located and arranged such that when selected resistive elements are heated by the application of electric current, the distal end is provided with controlled movement in two mutually orthogonal directions due to controlled bending of said elongate member.

Preferably, said elongate member is substantially rectangular in section having an upper and a lower surface, and wherein three said heatable resistive elements are provided extending in an elongate direction along said member, two of said three elements being located side by side adjacent one of said upper and lower surfaces, and the third of said three elements being located adjacent the other of said upper and lower surfaces, laterally aligned with one of said two elements.

Preferably, said three elements are electrically connected to a common return line at their ends closest to the distal end of said member.

Further the resistive elements are formed from a conductive material having a low coefficient of thermal expansion and an actuation material having a high coefficient of thermal expansion, said resistive elements being configured such that, upon heating, said actuation material is able to expand substantially unhindered by the conductive material.

Preferably, the conductive material undergoes a concertinaing action upon expansion and contraction, and is formed in a serpentine or helical form. Advantageously, the common line comprises a plate like conductive material having a series of spaced apart slots arranged for allowing the desired degree of bending of the conductive material. Further, the actuation material is formed around the conductive material including the slots. The actuator is attached to a lower substrate and the series of resistive elements include two heater elements arranged on a lower portion of the actuation substrate and a single heater and the common line formed upon portion of the action substrate.

Preferably the actuation material comprises substantially polytetrafluoroethylene. One end of the thermal actuation is surface treated so as to increase its coefficient of friction. Further, one end of the thermal actuator comprises only the actuation material.

In accordance with a second aspect of the present invention, there is provided a cilia array of thermal actuators comprising one end that is driven so as to continuously engage a moveable load so as to push it in one direction only. Further, adjacent thermal actuators in the cilia array are grouped into different groups with each group being driven together in a different phase cycle from adjacent groups. Preferably the number of phases is four.

BRIEF DESCRIPTION OF THE DRAWINGS

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings which:

FIG. 1 is a perspective view of an arrangement of four single thermal actuators constructed in accordance with the preferred embodiment.

FIG. 2 is a close-up perspective view, partly in section, of a single thermal actuator constructed in accordance with the preferred embodiment.

FIG. 3 is a perspective view of a single thermal actuator constructed in accordance with the preferred embodiment, illustrating the thermal actuator being moved up and to a side.

FIG. 4 is an exploded perspective view illustrating the construction of a single thermal actuator in accordance with the preferred embodiment.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

Turning to FIG. 1, there are illustrated 4 MEMS actuators 20, 21, 22, 23 as constructed in accordance with the preferred embodiment. In FIG. 2, there is illustrated a close-up perspective view, partly in section, of a single thermal actuator constructed in accordance with the preferred embodiment. Each actuator, e.g. 20, is based around three corrugated heat elements 11, 12 and 13 which are interconnected 14 to a cooler common current carrying line 16. The two heater elements 11, 12 are formed on a bottom layer of the actuator 20 with the heater element 13 and common line 16 being formed on a top layer of the actuator 20. Each of the elements 11, 12, 13, 14 and 16 can be formed from copper via means of deposition utilising semi-conductor fabrication techniques. The lines 11, 12, 13, 14 and 16 are "encased" inside a polytetrafluoroethylene (PTFE) layer, e.g. 18 which has a high coefficient of thermal expansion. The PTFE layer has a coefficient of thermal expansion which is much greater than that of the corresponding copper layers 12, 13, 14 and 16. The heater elements 11-13 are therefore constructed in a serpentine manner so as to allow the concertinaing of the heater elements upon heating and cooling so as to allow for their expansion substantially with the expansion of the PTFE layer 18. The common line 16, also constructed from copper is provided with a series of slots, e.g. 19 which provide minimal concertinaing but allow the common layer 16 bend upwards and sideways when required.

Returning now to FIG. 1, the actuator, e.g. 20, can be operated in a number of different modes. In a first mode, the bottom two heater elements 11 and 12 (FIG. 2) are activated. This causes the bottom portion of the polytetrafluoroethylene layer 18 (FIG. 2) to expand rapidly while the top portion of the polytetrafluoroethylene layer 18 (FIG. 2) remains cool. The resultant forces are resolved by an upwards bending of the actuator 20 as illustrated in FIG. 1.

In a second operating mode, as illustrated in FIG. 1, the two heaters 12, 13 (FIG. 2) are activated causing an expansion of the PTFE layer 18 (FIG. 2) on one side while the other side remains cool. The resulting expansion provides for a movement of the actuator 20 to one side as illustrated in FIG. 1.

Finally, in FIG. 3, there is provided a further form of movement this time being up and to a side. This form of movement is activated by heating each of the resistive elements 11-13 (FIG. 2) which is resolved a movement of the actuator 20 up and to the side.

Hence, through the controlled use of the heater elements 11-13 (FIG. 2), the position of the end point 30 of the actuator 20 (FIG. 1) can be fully controlled. To this end the PTFE portion 18 is extended beyond the copper interconnect 14 so as to provide a generally useful end portion 30 for movement of objects to the like.

Turning to FIG. 4, there is illustrated an explosive perspective view of the construction of a single actuator. The actuator can be constructed utilising semi-conductor fabrication techniques and can be constructed on a wafer 42 or other form of substrate. On top of the wafer 42 is initially fabricated a sacrificial etch layer to form an underside portion utilising a mask shape of a actuator device. Next, a first layer of PTFE layer 64 is deposited followed by the bottom level copper heater level 45 forming the bottom two heaters. On top of this layer is formed a PTFE layer having vias for the interconnect 14. Next, a second copper layer 48 is provided for the top heater and common line with interconnection 14 to the bottom copper layer. On top of the copper layer 28 is provided a further polytetrafluoroethylene layer of layer 44 with the depositing of polytetrafluoroethylene layer 44 including the filling of the gaps, e.g. 49 in the return common line of the copper layer. The filling of the gaps allows for a significant reduction in the possibilities of laminar separation of the polytetrafluoroethylene layers from the copper layer.

The two copper layers also allow the routing of current drive lines to each actuator.

Hence, an array of actuators could be formed on a single wafer and activated together so as to move an object placed near the array. Each actuator in the array can then be utilised to provide a circular motion of its end tip. Initially, the actuator can be in a rest position and then moved to a side position as illustrated for actuator 20 in FIG. 1 then moved to an elevated side position as illustrated in FIG. 3 thereby engaging the object to be moved. The actuator can then be moved to nearly an elevated position as shown for actuator 20 in FIG. 1. This resulting in a corresponding force being applied to the object to be moved. Subsequently, the actuator is returned to its rest position and the cycle begins again. Utilising continuous cycles, an object can be made to move in accordance with requirements. Additionally, the reverse cycle can be utilised to move an object in the opposite direction.

Preferably, an array of actuators are utilised thereby forming the equivalent of a cilia array of actuators. Multiple cilia arrays can then be formed on a single semi-conductor wafer which is later diced into separate cilia arrays. Preferably, the actuators on each cilia array are divided into groups with adjacent actuators being in different groups. The cilia array can then be driven in four phases with one in four actuators pushing the object to be moved in each portion of the phase cycle.

Ideally, the cilia arrays can then be utilised to move an object, for example to move a card past an information sensing device in a controlled manner for reading information stored on the card. In another example, the cilia arrays can be utilised to move printing media past a printing head in an ink jet printing device. Further, the cilia arrays can be utilised for manipulating means in the field of nano technology, for example in atomic force microscopy (AFM).

Preferably, so as to increase the normally low coefficient of friction of PTFE, the PTFE end 20 is preferably treated by means of an ammonia plasma etch so as to increase the coefficient of friction of the end portion.

It would be evident to those skilled in the art that other arrangements maybe possible whilst still following in the scope of the present invention. For example, other materials and arrangements could be utilised. For example, a helical arrangement could be provided in place of the serpentine arrangement where a helical system is more suitable.

It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.

Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

low power (less than 10 Watts)

high resolution capability (1,600 dpi or more)

photographic quality output

low manufacturing cost

small size (pagewidth times minimum cross section)

high speed (<2 seconds per page).

All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.

The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:

Tables of Drop-on-Demand Inkjets

Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of inkjet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.

Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

Ink Jet Printing

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference include:

Ink Jet Manufacturing

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference:

Fluid Supply

Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference:

MEMS Technology

Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference:

IR Technologies

Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference:

DotCard Technologies

Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference:

Artcam Technologies

Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference:

Claims

1. A thermal actuator comprising an elongate member of heat expansible material adapted to be anchored at a proximal end and having a movable distal end, and a plurality of independently heatable resistive elements incorporated in the elongate member located and arranged such that when selected resistive elements are heated by the application of electric current, the distal end is provided with controlled movement in two mutually orthogonal directions due to controlled bending of said elongate member.

2. A thermal actuator as claimed in claim 1 wherein said elongate member is substantially rectangular in section having an upper and a lower surface, and wherein three said heatable resistive elements are provided extending in an elongate direction along said member, two of said three elements being located side by side adjacent one of said upper and lower surfaces, and the third of said three elements being located adjacent the other of said upper and lower surfaces, laterally aligned with one of said two elements.

3. A thermal actuator as claimed in claim 2 wherein said three elements are electrically connected to a common return line at their ends closest to the distal end of said member.

4. A thermal actuator as claimed in claim 3 wherein said common return line extends in an elongate direction alongside said third of said three elements.

5. A thermal actuator as claimed in claim 1 wherein said resistive elements are formed from a conductive material having a relatively low coefficient of thermal expansion and said elongate member is formed from an actuation material having a relatively high coefficient of thermal expansion, said resistive elements being configured such that upon heating of said resistive elements, said actuation material is able to expand substantially unhindered by said conductive material.

6. A thermal actuator as claimed in claim 5 wherein said conductive material is configured to undergo a concertinaing action upon expansion and contraction.

7. A thermal actuator as claimed in claim 6 wherein said conductive material is formed in a serpentine or helical form.

8. A thermal actuator as claimed in claim 3 or claim 4 wherein said common line comprises a plate like conductive material having a series of a spaced apart slots arranged for allowing the desired degree of bending of said elongate member.

9. A thermal actuator as claimed in claim 8 wherein said elongate member is formed from an actuation material, formed around said conductive material including in said slots.

10. A thermal actuator as claimed in claim 5 wherein said actuation material comprises of substantially polytetrafluoroethylene.

11. A thermal actuator as claimed in claim 1 wherein the distal end of the thermal actuator is surface treated so as to increase its coefficient of friction.

12. A cilia array of thermal actuators each constructed in accordance with claim 1.

13. A cilia array as claimed in claim 12 wherein the distal end of each said thermal actuator is driven such that when continuously engaged with a moveable load the load is urged in one direction only.

14. A cilia array as claimed in claim 12 wherein adjacent thermal actuators are grouped into different groups with each group being driven together in a different phase cycle from adjacent groups.

15. A cilia array as claimed in claim 14 wherein the number of phases is four.

Referenced Cited

U.S. Patent Documents

Patent History

: 6044646 Type: Grant : Jul 10, 1998 : Apr 4, 2000 : Silverbrook Research Pty. Ltd. : Kia Silverbrook (Sydney) : Cheap Sale Eastbay DENIM Denim trousers Collection Privée Clearance Manchester Reliable Cheap Online Cheap Sale 100% Original Outlet Discount Authentic o3cyW
: 9/113,079

Classifications

: Mass Is Bimetallic (60/529) : F01B 2910;

Ask a Lawyer

IPSO Regulated Copyright ©2018 Express Newspapers. "Daily Express" is a registered trademark. All rights reserved.